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ABSTRACT 

The following properties, well known for normed linear spaces of dimension 
>_ 2, are established for an arbitrary topological linear space of dimension 

2 : (a) every neighborhood of 0 contains one whose complement is con- 
nected; (b) the complement of a bounded set has exactly one unbounded 
component. 

By a topological linear space we mean a real linear space with an admissible 
topology; that is, one with respect to which both vector addition and scalar 
multiplication are jointly continuous. The T~ separation axiom is assumed through- 
out. For each normed linear space of dimension > 2, it is obvious that 

(a) every neighborhood of 0 contains one whose complement is connected; 
(b) the complement of a bounded set has exactly one unbounded component. 
These properties play an important role in the study of mappings in normed 

linear spaces, and in line with efforts to extend the theory Andrzej Granas has 
asked whether (a) and (b) are valid in an arbitrary topological linear space. We 
show here that they are. There is an attempt to proceed under minimal hypotheses, 
so that the results will apply also to certain topologized linear spaces in which 
the algebraic operations are not jointly continuous. 

Henceforth, E will denote a linear space of dimension > 2 over the real number 
field 9t, and z will denote a topology for E.  Any assumption about z's relation- 
ship to the algebraic structure of E will be stated explicitly. As is well known [5], 
each finite-dimensional linear space has a unique admissible topology. This will 
be called its natural topology, and the notion is extended by translation to all 
finite-dimensional affine subspaces of a linear space. 

In treating (a), we make the following assumptions about the topology ~: 
(1) There is a neighborhood N of 0 such that N + N ~ E.  
(2) Every neighborhood of 0 contains a symmetric starshaped neighbor- 

hood of 0. 
(3) In every (two-dimensional) plane P through 0, the relative topology 

induced by z is identical with the natural topology of P .  
By an n-gon we mean an arc composed of n or fewer line segments. 
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THrOREM A. Suppose that (E, z) is a topologized linear space of dimension 
> 2 in which the conditions (1), (2), and (3) are satisfied. Then every neigh- 
borhood U of 0 contains a neighborhood W of 0 such that E ~ W is connected. 
Indeed, W can be chosen so that each pair of points of E ~ W is joined by 
an 8-gon in E ~ W. 

Proof. Let N be as in (1) and choose p ~ E ~  (N+ N). Choose a plane (2 
which contains the line ~ p ,  and let J be a 2-gon which joins p to - p  in Q. By 
(2), there is a neighborhood V of 0 in E such that V n  J = ¢, and by (3) there 
is a symmetric starshaped neighborhood W of 0 such that Wc N n U n V. We 
will show that each point x of E ~ (WU ~Rp) can be joined to p or to - p  by a 
3-gon in E ~ W, and from this the desired conclusion follows. 

Let P be the plal-e which contains the lines ~ p  and ~ x ,  whence W n P is a 
symmetric starshaped subset of P .  If the closure cl(W n P) of W n P in P does 
not contain any line through 0, then W n  P is bounded with respect to the natural 
topology of P; in this case, x can be joined both to p and to - p  by 3-gons in 
P ~ W. Suppose, on the other hand, that the set cl(W n P) does contain a line L 
through 0. Then there is exactly one such line, for the existence of two would 
imply that ( W n P ) + ( W n P ) = P ,  whereas W c N  and p e P ~ ( N + N ) .  
Now assume that the points x and p lie on the same side of L in P ,  and let Z 
denote the part of P which is bounded by the rays [0, oo [x and [0, ~ [ p  and 
which intersects L only at 0. Then W n Z is bounded and starshaped, so x can 
be joined to p by a 3-gon in Z ~ W. Similarly, x can be joined to - p by a 3-gon 
in P ~ W if x and p lie on opposite sides of L. This completes the proof. 

(When E is locally convex, the neighborhood W may be chosen so as to be 
convex, whence the 8-gons of Theorem A are replaced by 2-gons if W is closed 
and 3-gons if W is open. These numbers cannot be reduced. When E is locally 
bounded, W may be chosen so as to be bounded and starshaped, whence the 
8-gons are replaced by 3-gons if W is closed and 4-gons if W is open. Can these 
numbers be reduced? Can the number 8 in Theorem A be reduced for general 
topological linear spaces?) 

In treating (b), we consider a family g of subsets of E,  subject to the following 
restrictions: 

(4) I f X c Y a n d  Y e ~ ,  then X ~ g .  

(5) If  Ye ~ ,  then U y ~ r[0,y] ~ ~ .  

(6) If  Ye N,  and P is a plane through 0, then with respect to the natural 
topology of P there is exactly one unbounded component of P ~ Y. 

TI-mORnN B. Suppose that (E,z) is a topologized linear space of dimension 
> 2, ~ is a family of subsets of E, and conditions (3), (4), (5) and (6) are satisfied. 
Then for each member Y of ~ ,  exactly one component of E ~ Y fails to be a 

member of ~ .  
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Proof. Let J =  U v E r [ 0 , y ] ,  whence J e ~  by (5). We claim that for each 
plane P through 0,  the set P ,-~ J is connected and nonempty. Indeed, P,~ J is 
a union of rays collinear with 0, where each of the rays is unbounded and con- 
nected with respect to the natural topology of P and hence lies in an unbounded 
component of P ~ J .  By (6), there is exactly one such component, so P ~ J is 
connected. Since this is true for every plane P through 0 and since any two points 
of  E ,-, J lie together in some such plane, it follows that E ,-~J is connected. 

Now let U be the component of E ~ Y which contains E ~ J ,  and consider 
any other component C of E ,~ Y. Then o f  course C does not intersect U, whence 
C c j and (by (4)) C e ~ .  It remains only to show that U is not a member of  
~ .  Let K = U u  Ev[O,u] and suppose that U e ~ ,  whence K e ~  by (5). From 
the definitions of J and K it follows that every ray issuing from 0 is contained 
in J or in K or in both, and hence one of  the sets must contain two such rays 
Rx and R2. Since R1U R2 e ~ by (4), it follows from (6) that if P is a plane con- 
taining R t U R 2 ,  then P ~ (R 1 U R2) has exactly one unbounded component 
in the natural topology of  P .  But this is obviously impossible, and the contra- 
diction completes the proof. 

COROLLARY. Suppose that (E,z)and ~ are as in Theorem B, that the space 
(E, z) is locally connected, and that each member of ~ is nowhere dense in E. 
Then E ~ Y is connected whenever cl Y~ ~ .  

Proof. Since Y is nowhere dense, we have 

E ~ cl Y c  E ~ Y c  cl(E ~e lY) .  

Thus it suffices to show that the set E ~ cl Y is connected. Suppose the contrary, 
whence from Theorem B it follows that some component T of E ~ Y is a member 
of  ~ .  Since E is locally connected and E ~ cl Y is open, the set T is open and 
this contradicts the fact that the members of ~ are nowhere dense. 

Theorems A and B apply to many topologies for linear spaces, and to many 
choices for the family ~ .  Some of these are quite "pathological." Note, how- 
ever, that if dim E > d > 2 and if z is the finest topology for E which agrees with 
the natural topology on every d-dimensional affine subspace of E ,  then condi- 
tions (1) and (3) are satisfied but (2) is not. (See [4] for discussion of a similar 
topology.) We do not know whether the conclusion of Theorem A is valid in this 
case. 

In addition to the admissible topologies for a linear space, we consider also 

thefinite topology, which is defined as the finest topology agreeing with the natural 
topology on every finite-dimensional affine subspace. (It appeared under a dif- 
ferent name in 11]. The present term was used in [2] and [3].) It is not admis- 

sible when d i m e  > No, for then the vector addition is not jointly continuous [3]. 

Among the many ways in which the members Y of the family & may be selected 
we mention the following: 
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(7) For each neighborhood U of 0, there exists p e ~R such that #U D Y. 

(8) The set Y is contained in a linearly bounded convex set. 

(9) The intersection of  Y with any finite-dimensional affine subspace is bounded 
in the natural topology. 

(10) The closure of Y is compact. 

TrmogrM C. Suppose that (E,T) is a topologized linear space of dimension 
> 2, where z is an admissible topology or thefinite topology. For i = 7, 8, 9, 10, 
let ~ denote the family of all subsets Y of E which satisfy the condition (i). Then 
Theorem A applies to the space (E,z) and Theorem B applies to the system 

Proof. It is obvious that conditions (1), (3), (4) and (6) are satisfied in each 
case. For condition (2), consider an arbitrary neighborhood U of 0. By the joint 
continuity of  scalar multiplication (established for the finite topology in [2]), 
there exist e > 0 and a neighborhood V of 0 in E such that ] - e , e [ V c  U. But 
the set ] - e ,  e[ V is a symmetric starshaped neighborhood of 0. 

If  ~ is defined by (8) or (9), the fact that (5) holds is immediate from the re- 
levant definitions. If  & is defined by (7) or (10), it is well known that (5) holds 
when z is an admissible topology. Thus to complete the proof, it suffices to es- 
tablish (5) when ~ is defined by (7) or (10) and • is the finite topology. For this, 
in turn, it evidently suffices to prove the following: 

(*) If  Y satisfies condition (7) for the finite topology, then Y is contained in 
a finite-dimensional linear subspace of E.  

In order to prove (*), let us suppose that Y contains an infinite linearly inde- 
pendent set X.  Let H be a Hamel basis for E such that X c  H ,  let xl,x2,"" 
be an infinite sequence of  distinct members of X ,  and let el, e2, "" be a sequence 
of  positive numbers converging to zero. Finally, let U denote the convex hull 
of the set 

( n ~  ...}) u ...}. 

Then U is a neighborhood of 0 for the finite topology, and yet Y is not contained 
in any multiple of U. The contradiction completes the proof of (*) and hence 
of Theorem C. 

Since (7) is the usual notion of boundedness in topological linear spaces, our 
results supply an affirmative answer to the question of Granas. From the Co- 
rollary it follows that if Y is a subset of a topological linear space E,  then E ,,~ Y 
is connected if any of the following statements is true: E is infinite dimensional 
and cl Yis compact; E is not locally bounded and Yis bounded; E does not admit 
a separating family of continuous linear forms and cl Y lies in a linearly bounded 
convex set. 
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